I was out at the Skeptics Society science talk on Sunday. The speaker was Stephon Alexander, a theoretical astrophysicist at Brown University, who talked about the relationship between string theory and music. Dr. Alexander also plays the tenor sax, and has released his first jazz album. His new book, The Jazz of Physics, describes the relationship between his two passions.
The format was a discussion with Michael Shermer, the head of the Skeptics Society. Michael rounded out the conversation with the “big questions.” Regarding the future of physics, Alexander predicted that we would have a theory that reconciled gravity and quantum mechanics in the next fifty years. As for the ultimate origin of the universe, Alexander observed that the possibility of creating carbon, which is the basis for life on earth, is tightly coupled to the relative strengths of two fundamental forces: the first binds quarks together to form a proton, and the second binds electrons to protons to form hydrogen atoms. Even a 10% change in strengths would prevent the formation of carbon in stars. This is the kind of “fine-tuning” often exclaimed by theists, but Alexander allowed Shermer to lead the conversation into a discussion of the multiverse hypothesis.
As you might imagine, I ended up having to apologize to Dr. Alexander for the question that I raised.
The question was motivated by the history of physics, which has again and again used the equations of oscillating waves to describe complex phenomena. This is the technology of Fourier analysis, and its power lies in fact that waves can be composed to produce very complex patterns. (Just consider the surface of a swimming pool, for example.) But Fourier analysis has its weaknesses, and I am particularly concerned regarding two of them.
The lesser of the weaknesses is that close to the source of a wave, other mathematical methods may give a more concise description of the disturbance. For example, the surface of a beaten drum deforms with Bessel waves. This is also how the air moves in the vicinity of the drum. It is only far from the source that the pressure waves that we hear as sound are described efficiently by Fourier notation. So when applied inappropriately, Fourier analysis may make it difficult to understand the things that create the waves.
The second weakness is that the media in which waves propagate are not smooth – they are actually composed of particles. We have seen this again and again in physics. Sound waves can be described as waves, but until we accept that gases are composed of little atoms there are certain effects that we can’t explain – such as why our voice squeaks after we inhale the helium from a balloon. Considering water waves, Einstein himself was awarded the Nobel prize in part for explaining the motion of small impurities in water with the insight that the water was composed of atoms that bashed the impurities around, causing them to jitter and wander rather than flowing smoothly from place to place. More abstractly, James Clerk Maxwell predicting the existence of electromagnetic waves by combining the equations that describe the generation of electric and magnetic fields. Einstein’s Nobel award also recognized his explanation of the photoelectric effect with the idea that electromagnetic waves were actually composed of particles called photons.
Considering this history, it seems natural to wonder whether the theories that Alexander describes in his book – theories that hold that the cosmos is composed of quantum-mechanical waves – are going to be replaced by theories that posit structures inside those waves. In response to the question, he offered that there had been some ideas proposed of that type, but they hadn’t been developed because they were “unfashionable.”
I had the sense that I rained a little on Dr. Alexander’s parade, which upset me. There were a number of young Hispanic high-school students in attendance, and he made a powerful representation to them that anyone can aspire to be a scientist – the most important steps were to try, to keep your eye out for mentors, and to recognize whether it was truly your passion. That is an important message, and in casting doubt on his picture, I may have undermined the inspiration that he offered.
But I just couldn’t help myself. It was those questions asked by Shermer, to which I believe I have been granted such powerful answers. This I was able to communicate to Stephon when I stopped to have my book signed. During his talk, he enthusiastically related the vision that the universe of waves sings to itself, a vision not dissimilar to his experience of jazz improvisation.
While the specifics are different, the passion is common to us both. I offered to him that, not being an academic, I don’t often have the opportunity to share my ideas, and because I have been led by them into a view of the universe that contains such wholeness and beauty, I tend to become a little bit passionate when conveying them. However, I do intend them as gifts, and hope that they help people to escape fear that has no foundation.
And maybe, just maybe, one of those young people will be inspired by the analogy I offered. We know that the gravitational waves exist – they were recently detected by the LIGO collaboration. And we know what they propagate in: dark energy. It only takes the courage to break from what Alexander called “fashion” to cast down Einstein and offer a new view of the universe – a view that I am fairly certain explains spirituality, and makes evident the existence of God.
And, given Einstein’s views on quantum mechanics, famously stated as “God does not play dice with the universe,” I believe that the great man himself might forgive me the ambition to see him overthrown.