The Relative Incoherence of Special Quantum Spirituality

We in the West see the attempt to reconcile physics and spirituality as an Eastern concern. Indeed, it is the Vedantic philosopher Deepak Chopra who most vigorously engages Western science in that debate. The Western prejudice, however, is supportable only for those with a selective memory. Following the discovery of magnetism in the 19th century, “Mesmerists” were popular in Europe. The practitioners would demonstrate their mind-control abilities by touching the cranium of a susceptible assistant. When one was brought to trial for fraud, the scientists of the era actually testitfied in his defense.

Keeping in mind that history, I tend to be sympathetic to Chopra and his partisans. Unfortunately, they are chasing after rainbows, and creating a lot of confusion as a result.

Richard Feynman, brilliant quantum theorist, observed that quantum mechanics was a mathematical procedure without philosophical foundation. That’s pretty unique to 20th century physics. Prior to that time, the scientist could always build mental pictures of the interactions between the elements of the model. This was a practice that they attempted to apply to Quantum Mechanics and Special Relativity as they evolved, with unfortunate results.

This desire to provide explanations was carried forward during an era in which the basic tenets of the theory were still being worked out. Sometimes the preliminary theory would be applied in way that later scientists would consider incomplete, but a sensible answer would be obtained. The answers were published, often with popular interpretations of what was going on in the underlying reality. What is perhaps not surprising is that the popular interpretations are more widely known today than the actual theory itself. Because the interpretations were based upon bad science, they create confusion in the public mind.

To illustrate: in Special Relativity, Einstein held that clocks appear to tick more slowly when they move rapidly with respect to the observer. Based upon this, a thought experiment was constructed involving two twins, one of whom travels to a distant star and returns much younger than his sibling that stayed home on Earth. The calculation assumes, however, that the traveling twin reverses instantaneously his speed and direction upon arrival at the distant star. Obviously, if this was the way that the space ship was designed, the traveling twin would be just so much pate upon returning to Earth. No, the ship must decelerate and accelerate. When that part of the mission plan is included in the calculations, it turns out that the special relativistic effects disappear completely. The twin paradox is a hoax.

In quantum mechanics, we have the famous “wave-particle duality” and “wave function collapse”. Wave-particle duality was “proven” by electron self-interference: an electron impinging upon a screen with two closely-spaced slits will not be seen in two spots on the far side of the screen, as though it had passed through one slit or the other, but instead be distributed over numerous islands of intensity, as though it was a wave that had passed through both slits. The problem in this calculation is that in quantum mechanics, the behavior of any one electron can only be understood by considering the behavior of all the electrons in the system. The failure to include the electrons in the screen in the calculation leads to at least one paradox, and precludes alternative explanations of the observations.

“Wave function collapse” was an extension of “wave-particle duality” to scattering problems. In classical mechanics, when two billiard balls collide, we can predict the final state of the balls from the initial state. Not so in quantum mechanics: scattering objects spray about more broadly. However, the rules of energy and momentum conservation still apply. Therefore, measuring the final state of one of the scattered particles determines the state of the second. The first measurement causes the possible final states of the second to “collapse” to a single allowed result. This led to the idea that the conscious act of observation affects the behavior of physical systems. The “Schrodinger’s cat” thought experiment is the popular expression of this idea. But there are many types of uncertainty in quantum mechanics, and just because the observer doesn’t know the final state of the particles doesn’t mean that they particles don’t have a definite state. They may “know” perfectly well what their direction and speed of motion is.

The weak practice and explanations offered by early quantum and relativity theorists open the door to mystics seeking to explain their experience of reality. The acausal connectedness of mystical events (what Jung called “synchronicity”) seems to correspond to the complex structure of time in special relativity. The interaction between consciousness and physical events in Schrodinger’s world corresponds to the mental powers of the guru.

But the fact is that the theories, while describing unfamiliar behavior in fundamental particles, are completely inapplicable to the behavior of macroscopic composites such as people. The probability of seeing quantum behavior in a macroscopic object is so minute that the Eastern mystic must hold his experience as a refutation of quantum mechanics. That leads in the direction of new physics.

At this point, I would argue that the most powerful laboratories of the modern era will be our minds, rather than the billion-dollar observatories that the scientific-industrial establishment insists the public must fund. The ultimate proof of the power of a theory will be not in how it empowers us to manipulate objects without personality, but rather in the degree to which it makes us transparent to the flow of Divine Love.