Generative Orders Research Proposal – Part IV

Reference Model

Having advanced the principles of generative orders, we find ourselves in a situation somewhat similar to that faced by quantum theorists after wave-particle duality was advanced. A number of experiments appeared to violate the principles of Classical Mechanics (i.e. – the double-slit experiment, electronic excitations of the hydrogen atom, and the photoelectric effect). Progress was achieved by generalizing the methods of classical mechanics (Hamiltonian and Lagrange equations) into differential equations through Fourier analysis.

The problem in the case of generative orders is more difficult. The principle does not generalize existing theory into new realms of application – it serves to supplant existing theories, stretching back to Special Relativity and quantum mechanics. Additionally, the enumerated principles are abstract. They do not drive us to a specific formulation of physics in one dimension. A number of alternatives may be mathematically feasible.

Lacking a definite starting point for analysis, nothing short of an intellectual Big Bang would produce a fully elaborated theory that explains everything that is known about particle physics and cosmology. That does not exclude thoughtful exploration of specific possibilities. In this section, we consider a simple model (narrative here), elaborated to the point that conceptual correspondence with known phenomenology is established. The model is sufficient to support development of model potentials (as outlined in the research program), and therefore to advance theoretical insight and analysis methods that can be applied to other models.

  1. The initial state of the universe is a disordered but “cold” (at least as compared to Big Bang theories) collection of one-dimensional structures.
  2. Physics of one dimension includes a mechanism of segmentation (or quantization). The W/Z mass may establish a scale for this segmentation (see item 8 in this list).
  3. Folding or bonding on segmentation boundaries produces higher-dimensional structures. Geometrically, we know that triangles are the most stable of these structures.
  4. Higher-dimensional structures are self-associative, building lattices of distinct dimensionality. Tiling a plane with triangles is trivial. The structure of higher-order lattices is a an extrinsic property of the lattice potential.
  5. Lower-order lattices may exist in the empty spaces between cell layers. This is again an extrinsic property of the lattice potential
  6. Lattice formation is spontaneous. Orientation of expanding lattices is random.
  7. Surface energy at the boundaries between merging lattices of different orientation (a la grain boundaries in metals) provides the energy to compress structures into lower order, producing quasars and super-massive black holes at the center of galaxy formation. In this model, a black hole in three dimensions is a volume bounded by a two-dimensional lattice.
  8. Parthogenesis occurs through the expulsion of residual lower-order structures from the enclosed surface. In the reference model, these are one-dimensional structures (termed “threads” below). Threads may pass around the polygonal subunits of the lattice or through them. Threads that penetrate the lattice sub-units are localized, creating loci that we identify with fermions. Fermions interact strongly with similarly localized threads, giving rise to the non-gravitational forces. The potential barrier of the W and Z mass corresponds to a thread-exchange process, which requires reconfiguration of the sub-units.
  9. Captured threads locally distort the lattice. Gravity is a side-effect of the lattice energetics that localizes the distortion.
  10. Dark energy corresponds to the potential energy of lattice compression.

This illustrates how the principles of generative orders can be used to build a simple one-component model of the early universe. Geometrical models are presented in Chapter 4 of Love Works.

Certain details of particle phenomenology appear superficially to be accessible in the context of this model.

  1. Charge corresponds to the number of threads that penetrate a lattice sub-unit (which naturally has three degrees of freedom). Sign is simply a way of characterizing the tendency of fermions to attract fermions with different degrees of thread penetration.
  2. Mass arises naturally when threads pull on each other, causing the loci of thread capture to be dragged through the lattice. From the properties of the first particle family, it would appear that asymmetrical thread configurations must be more disruptive than symmetrical configurations. The equivalence of gravitational and kinetic mass is natural, as both effects correspond to lattice distortions. The equations of special relativity suggest the velocity-dependence of kinetic distortions.
  3. Particle families correspond to distortions of a particle’s lattice sub-unit from its normal configuration.
  4. Conservation of momentum could result from lattice dynamics that tends to reject disturbances, forcing energy back onto moving fermion. Analogies in material science include superfluidity and superconductivity.
  5. Light could be a self-propagating disturbance in the lattice, achievable only through fermion kinematics. Assuming that gravitational packing of particles causes re-orientation of the lattice at the surface of large bodies, the constancy of the speed of propagation is a local phenomenon (i.e. – a massive body “drags” space around with it).
  6. Light may interact with the lattice as it propagates, causing energy loss that manifests as a shift to lower frequencies. This may explain the microwave background radiation.
  7. A soul is a complex configuration of threads that are supported by but only tenuously bound to the lattice.

These configurations store energy as potential energy due to the associated distortion of the lattice.

Obviously, all of these are conceptual possibilities, whose validity can only be established through construction of a model of the energetics of the interactions between one-dimensional structures. As will become clear in the description of the research program, the list is by no means exhaustive. It is presented to provide a sense of the naturalness of fit between phenomenology and theories that might be elaborated using the principles of generative order.

Generative Orders Research Proposal – Part I


The author proposes to develop research partnerships to develop a conceptual model of fundamental physics that has the potential to place spirituality on a firm scientific basis. The motivation for the scientific program is well-grounded in phenomenology, and the author outlines correspondence with established theory as limiting cases of the proposed model.

The author recognizes the gnostic implications of the program on society. Certain rules of engagement must be observed in doing such work – generally, the first application of any new technology is to obtain competitive advantage. To mitigate against such outcomes, the author has written a book that explains, in layman’s terms, the disciplines required to safely engage these principles, and the long-term personal and global consequences of failing to observe them. The proposal includes support for updating the book, entitled “Love Works”, and for professional preparation and publication.

The proposal seeks not to resolve all questions regarding the proposed class of theories. It is intended to stimulate thinking that should lead to independent research and funding by the research community. The proposal does include publication of a single paper that may demonstrate a significant point of departure from current models of particle physics and cosmology. Successful publication should stimulate “out-of-the-box” thinking by the research community, followed by independent research proposals.


The author’s principle qualifications for those work are selflessness and a commitment to Life in all of its forms. Many of the ideas presented were formulated through engagement with forms of sentience not recognized by many scientists.

With regards to the fundamental physics, the author received his Ph.D. in high-energy particle physics in 1987 and was active as a Post-Doctoral research fellow until 1992. Most of the conceptual underpinnings of modern particle theory and cosmology were developing during this period, and his observations of their development makes the author well-suited to recognize their short-comings.

However, the author recognizes his limitations with regards to the skill-sets of the modern particle theorist, including large-scale numerical modeling. The author will develop relationships at institutions with large-scale computational physics programs to collaborate in the program.


The principal motivation for this work is to heal the divide between science and religion that promotes fear, anxiety, anger and apathy in those confronted with the enormous global challenges of the 21st century. The author believes that science is a process of revelation that can embolden and empower those with a genuine desire to be of service to the end of healing the world. Religion is concerned with the development of disciplines that enable us to work safely with the requisite spiritual energies.

While fostering spiritual maturity is critical to a successful execution of the overall program, the development of supporting resources is fairly well advanced. (The author has published his moral and ethical philosophy at, and Love Works is a popularization aimed at the culturally dominant community of Christian believers.) The author considers publication of Love Works to be a critical adjunct, and will not pursue separately the scientific program.

Plan of Exposition

Love Works is provided as an attachment for the evaluation. The focus of exposition will therefore be to motivate and describe the scientific program. The scope of the development is far greater than necessary to complete the work of the first year. As an alternative to theories that have had thousands of man-years invested in their development, it is important to establish plausible paths of investigation for the obvious problems that must be overcome in investigation of the new class of theories, characterized as theories of “Generative Order” (GO).

To be fair, the discussion starts with an enumeration of the failures of the prevailing class of theories, which are characterized as theories based upon “Gage Invariance” (GI).

Every physical theory has a set of fundamental constants. In current theories, the fundamental constants include the speed of light, the particle masses, Plank’s constant, and the strengths of the fundamental forces. The principle challenge in qualifying theories of Generative Order is determining the number and values of those constants. The exposition proposes a series of modeling problems that could be undertaken to evaluate a specific theory and determine its constants. Each modeling problem addresses a critical issue in establishing that a theory of Generative Order yields the current theory as a limiting case (just as Relativity and Quantum Mechanics have Newtonian physics as a limiting case).